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LETTER TO THE EDITOR 

A rotor expansion of the su(3) Lie algebra? 
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5 Rutherford Physics Building, Physics Department, McGill University, Montreal, Quebec, 
Canada, H3A 2T8 
11 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada, M5S 1Al 

Received 24 January 1989 

Abstract. Vector coherent state theory is used to give a rotor expansion of the su(3) Lie 
algebra in a way that parallels the boson expansions that have been made for other Lie 
algebras. The construction provides a systematic procedure for calculating Hermitian 
matrix elements of su(3) in an S0(3)-coupled basis and represents a new development in 
vcs theory and in the theory of induced representations. 

It is well known that, for large-dimensional irreducible representations (irreps) the 
matrix elements of the su(3) Lie algebra approach those of corresponding representa- 
tions of the rigid rotor algebra [R5]so(3). By a new application of vector coherent 
state (vcs) theory (Rowe 1984, Hecht 1987), we show in this letter that any Hermitian 
su(3) irrep (corresponding to a unitary representation of the SU(3) group) can be 
realised in rotor terms. This is a useful result in view of the simplicity of the rotor 
algebra and the facility that has been developed in its use through applications to 
nuclear rotational states. The rotor expansion that we obtain for the su(3) Lie algebra 
provides a systematic procedure for the calculation of 4 3 )  matrices in an so(3)-coupled 
basis. It provides a direct relationship between the 4 3 )  and rigid-rotor descriptions 
of rotational states of deformed nuclei and it serves as a prototype for parallel rotor-type 
expansions of other Lie algebras. Thus, it represents a significant advance in vcs 
theory, which has already proved to be a powerful and versatile tool in the construction 
of induced representations. 

The [R5]so(3) Lie algebra is spanned by five commuting quadrupole moments 
{QY; v = O ,  *l, *2} and three components {Lk; k=0, *l} of angular momentum. A 
generic irrep of the rotor algebra (Vi 1970, Weaver et aZl973) is labelled by {E, E', qo, q2} 
where E and E '  take values *l and qo, q2 are positive real numbers which have the 
physical significance of intrinsic quadrupole moments. An orthonormal basis for such 
an irrep is given by the combinations 

of SO(3) Wigner functions with K restricted to either even or odd non-negative integer 
values such that (-l)K = E ' .  The rotor operators act on these wavefunctions by 

LO$KLM (a) = WKLM (a) 
L*$KLM(fl)  = d ( L T W ( L * M +  1)$KLM*,(') (2) 
Qv$KLM(') = [ q O a ; v ( f l ) +  q2(9;v( '2 )+  ~ ~ Z v ( n ) l $ K L M ( ~ ) .  
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In addition to the generic (so-called triaxial) representations, there are axially symmetric 
representations for which q2 = 0. The latter are characterised by constant values of 

A basis for the complex extension of the u(3) Lie algebra is given by the nine 
{ E ,  K, 401. 

operators {CO; i, j = 1 ,2 ,3}  which satisfy the commutation relations 

[Cij, CHI = SjkCi, - SirCkj. 

In terms of these operators, the su(3) subalgebra is spanned by five quadrupole moments 

= J;(C,, - c,, * i cZ3 * ic32) 

and three components of angular momentum 

Lo = -i( C23 - C32) L1 =- i (C31-C~~)*(C~2-C21) .  (4) 
But, unlike the rotor quadrupole moments, the 4 3 )  quadrupole moments do not 
commute. This reflects the fact that 4 3 )  is compact whereas [R5]so(3) is non-compact. 
Thus su(3) has finite-dimensional Hermitian irreps whereas those of [ R5]so(3) are 
infinite-dimensional. Nevertheless it is observed (Elliott 1958) that, for su(3) irreps 
with large highest weights (A,  p ) ,  the states of angular momentum L<c A, L<c p are in 
one-to-one correspondence with those of rigid-rotor irreps. Furthermore, as A, p -$ a, 
the matrix elements of the 4 3 )  quadrupole operators between such states approach 
those of a rigid rotor with 

q o = 2 A + p  q 2 = &  E = ( -1y E ’ =  ( -1)P.  

We show here that all states of any finite-dimensional su(3) irrep can be realised 
within a subspace of a rigid-rotor representation space and that on this irreducible 
su(3) subspace the 4 3 )  quadrupole operators are represented by the rotor-like 
operators 

u=w = ( 2 ~  + p  +3)9:,(w -iw2, 9:mi +&gi:m(p - Lo) + 9 : 2 v ( ~ ~ ( p  + LO)l 
(5) 

where L2 is the square of the angular momentum and Lo is a so-called intrinsic (i.e. 
left) angular momentum operator; cf (8). 

Let V be the carrier space for a Hermitian su(3) irrep T having highest weight 
(A,  p )  and let I ~ ) E  V be the highest weight state. Then Iq) satisfies the equations 

T(C*z-  C.dl(P)=pIV). 
Let R(R)  denote the rotation operator for R E  SO(3) generated by the representation 
T of the angular momentum operators of so(3). 

We now recall the well known result (used by Elliott 1958) that the set of states 

{R(R)lp); E SO(3)) 
obtained by rotation of the highest-weight state Ip) through all possible angles, spans 
the su(3) representation space V .  It follows that a state I$) E V is uniquely defined by 
the ‘coherent state’ wavefunction 

$ ( a )  = (vlR(fi)l$) R E SO(3).  



Letter to the Editor L311 

The wavefunction $(a) clearly belongs to the space P2(SO(3)) of functions on SO(3) 
that are square integrable with respect to the S0(3)-invariant measure. Thus we obtain 
an embedding of the carrier space V for the hermitian su(3) irrep T in 2'(S0(3)) by 

'V+ Z2(S0(3))  I$)- $(a). 

T(X)I$>+ W o $ ( f i )  = (vlR(fi)T(X)I$) 

Under this map the 4 3 )  irrep T maps to an equivalent representation r defined by 

vx E su(3). 

The representations T and r are clearly isomorphic. Therefore r, like T, is irreducible. 
It is a new kind of coherent state representation. 

Under a rotation w ~ S 0 ( 3 ) ,  a state IaLM)€ V of angular momentum L and 
z-component M transforms 

I OLM) + R ( w ) I  a L M )  = c 1 a L N ) 9  kM ( U ) .  

$ a L M ( f i )  = (vlR(fi)laLM) = c (vl.LN)%f(fi) 

N 

The state IaLM) is therefore represented by the wavefunction 

N 

and transforms under w E SO(3): 

$ a L M ( f i )  + ( q l R ( f i ) R ( w ) l a L M )  $ a L . N ( f i ) g k M ( w ) *  
N 

Thus the representation I' of the angular momentum operators acts in the standard 
way by 

F ( L O ) $ a L M ( f i )  = M $ a L M ( f i )  

r ( L * ) $ a L M ( f i )  =J(LT M +  1 ) $ a ' M * l ( f i ) .  

R(R)2luR(fi-')  = c sc9;,(n). 

(7)  

Since Su is the component of a second-rank SO(3) tensor, it transforms under rotations 

P 

It follows that 

T(%)I$)+ r(%)$(fi) = c (v1%$(fi)l$)B$(fi). 
c 

From the highest-weight properties ( 6 )  of Iq), and the identities (3) and (4), it follows 
that 

(vlSoR(fi)I$> = ( 2 A  +PH(PIR(fi)l$> = (2A  + P ) $ ( f i )  

( d ~ * I R ( f i ) l $ )  = -Ji(vlL*R(fi)I$> = -JE*$(fi) 
(vl~*,R(fi)I$)=Jf(vl(P FLo)Nfi)l$)=Ji(P TLo)$(fi) 

(9 I Lk"l a L M )  = c (cp I L k l  a L N ) g  kMM(fi) 

where Lo and I?, are the infinitesimal generators of left rotations. Their actions are 
defined by considering, for example, 

N 

from which we infer that 

L*9kM(fi) =d(L* N ) ( L F  N +  l ) 9 i " N r l , M ( f i )  

I O 9 k M ( f i )  = N9k,(fi) 
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[ L2, 9i,(a)] = 69iv(R)  + 24[ 9i,(n)e+ + 9dZ_,,(n)~-] 
we obtain ( 5 ) .  

It remains to determine the domain of the coherent state representation r; i.e. the 
subspace of coherent states in T2(S0(3)) of the form +(a) = (cplR(n)l$) with I $ ) E  V .  
Let r ( X ) ,  with X E su(3), denote the extension of the operator I ‘ (X) ,  given by (9, to 
the dense subspace of T’(SO(3)) spanned by all SO(3) irreps. Unlike I‘, which by 
definition is isomorphic to the irrep T and hence irreducible, the extended representa- 
tion is infinite dimensional and reducible. However, it is easily shown that the 
desired coherent state subspace is an invariant subspace of r and that r is the restriction 
of r to this subspace. Therefore, since every su(3) irrep has a single and hence uniquely 
identifiable multiplet of minimum angular momentum states ILmi,M), M = -L, . . . , + L  
with LZi, = 0 or 1, one can generate the coherent state subspace by the repeated action 
of the r operators on these states. 

First observe that a state 10) of L=O has coherent state wavefunction 

$(a) = (cpIR(fi)lO) = (VlO) 

independent of a and hence proportional to the unique K = L = 0 state (Cloo(R) of (1). 
A state 11 M) E V of angular momentum L = 1 has wavefunction 

$ , M ( f l )  =(cplR(n)llM)=C (cpl”kM(~). 
N 

Now it is easily shown that under rotations through angle T about the y and z axes 

Rz(T)lcp) = (-1)”b) 

~Jdld = ( - - l )Alcp)  

R,( 7r)ll N )  = (- 1) 11 N )  
R,(.rr)llN)= ( - 1 y 1 1 ,  - N ) .  

Therefore 

+ l M ( f l )  = (cpll0>9;M(n) p even 

= ( c p l l l > [ 9 d : M ( n ) + ( - 1 ) A 9 ~ l M ( n ) l  p odd 

is proportional to either $olM(Q) or $IIM(a) of (1) with E = (-l)A and E ’ =  (-1)’. 
The T operators are observed to leave invariant the subspace of states in 2?(S0(3)), 

that belong to a rotor irrep with E = (-l)”, E ’ =  (-1)”. Therefore we may restrict 
consideration of the matrix elements o f f ;  to rotor states of these values of E and E ’ .  

The S0(3)-reduced matrix elements of I? in the rotor basis (1) are easily determined. 
Defining reduced matrix elements by means of the Wigner-Eckart theorem 

(K’L’M’I I?, (2)l K L M )  = (2L’ + 1 ) L2 Mv( L’M’)( K ’L’I Ir( 2)l I K L )  
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where A = 2A + p + 3 and uLL, is defined by 

(_::g..:) for L’= L 

u L , L = ~ ( ~ + + ) ( - ~ ) ” ~ x  L + I  for L ’ = L + l  
for L’=L-1  1:: for L‘= L k 2 .  

These equations immediately imply that the invariant subspace of r containing the 
state of L = Lmin has K values restricted to the range K = p, p - 2, . . . , 1 or 0. 

Consider, for example, a p = 0 irrep. Then K = 0 and r(2) has matrix elements 

One sees that, if one steps up in units of two from the lowest angular momentum state 
of L=O when A is even and L =  1 when A is odd, the sequence terminates at L=A. 
Thus we identify the 4 3 )  coherent state subspace for a (A, 0) irrep to be the space 
spanned by the rotor wavefunctions t+bKLM(fl) with K = 0 and L = A, A - 2 , .  , . , 0 or 1 
and with quadrupole matrix elements given by 

( O L ~ ~ ( ~ ~ ( ~ ) ~ ~ O L ) = ( O L * ~ ~ I T ( ~ ) ~ ~ O L }  for L s  A. 

These results are consistent with the known branching rules (Elliott 1958) for the 
angular momentum states in an 4 3 )  irrep (A ,p )  given in terms of a convenient 
multiplicity label k by 

L = k, k + 1, . . , , k + A k#O 

= A ,  A - 2 , .  . . , 1 or 0 

k = p , p - 2  ,..., 1 or 0. 

k=O 

To proceed further we need to address two related problems. The first is that for 
rotor irreps for which there is a multiplicity of states of the same L value, we need a 
systematic procedure for identifying the combinations of states that belong to the 
irreducible su(3) subspace. The second problem is that, although the representation 
r is equivalent to a Hermitian representation y, it is not in fact Hermitian. We therefore 
seek a similarity transformation 

?(x) = .?c-lr(x)x x E su(3) (13) 
to bring it to its Hermitian form. We shall show that, with minor adaptation, the 
K-matrix theory (Rowe 1984, Rowe er a1 1988, Le Blanc and Rowe 1988) solves both 
problems. 

First recall that a representation y of su(3) is Hermitian if 

Y t ( 2 ” )  = ( -1)”7(2-”)  rt(Lk) = (-l)k?(L-k)* 
We therefore define the Hermitian adjoint of a representation r by 

ry(9,) = ( - i ) ’rt(2-v)  r”( Lk) = ( - i )krt(  L-k). 
Thus the condition that a representation y is Hermitian is that 

Y # ( X )  = 74x1 v x  E 4 3 ) .  
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It follows that, if y is the Hermitian representation related to the non-Hermitian 
representation r by (13), then by taking Hermitian adjoints we obtain 

x+r#(x) = y # ( ~ ) ~ t  = y ( ~ ) x t  vx E su(3). 

Multiplying both sides by X, one concludes that r and I‘# are equivalent and that the 
positive Hermitian operator S = XXt is the intertwining operator for which 

sr#(x) = r(x)s vx E 4 3 ) .  (14) 
A similar equation exists for the f and T” representations 

ST”(X) =T(X)S vx E 4 3 ) .  

We shall show, by construction, that S is uniquely determined by S. Note that all 
matrix elements of f(9) in the chosen basis are real and that the matrix elements of 
T”(X) are simply related to those of f (X) by 

(K’L’llT”(9)JIKL) = ( - l ) L ’ - L ( K L (  lr(2?)l IK’L’). (16) 
The transformation s leaves the S0(3)-tensorial properties of states unchanged; i.e. 

SIKLM) = IK’LM)SkV,. 
K ’  

Thus is block diagonal in L and the block S L ” n ,  for the lowest multiplicity-free 
value of L = Lm,, = 0 or 1, is one dimensional We therefore set s L m i n  = 1 and use (15) 
to define recursion relations for 3“ for L >  1. For example, the operators with L’ = L +  1 
or L S 2  satisfy the equations 

(K‘L’llSL’T”(9)I IKL) = (K’L’Ilf(9)SLI IKL). (17) 

If the number of su(3) states with angular momentum L’ does not exceed the number 
with angular momentum L, these equations are sufficient to determine s“’ from SL. 
If there is an extra state of angular momentum L‘, one then needs the single additional 
equation 

(K’L’1JSL‘T”(9)I IK”L’)(K’’L’IJT#(9.)JIK,,,L) 
K ”  

= (K’L‘I If(9))I IK”L’)(K’’L’( If(9)SLI lKmaxL). (18) 

We now claim that the whole problem of constructing the matrices of an arbitrary 
Hermitian su(3) irrep is reduced to solving these very simple recursion relations for 
3‘ for the values of L that occur in the su(3)Jso(3) branching rules of (12). First 
observe that $maps the space of rotor wavefunction onto its irreducible su(3) (coherent 
state) subspace. This observation is proved by noting that, while f”(9) generates the 
whole rotor model space by repeated action on the ILminM) states, all states of the form 

K ”  

P(r(9))ILminM) = SP(T#(92))ILminW 
where P is any polynomial, belong to the irreducible su(3) subspace. Furthermore we 
know that r is the restriction of f and r” is the projection of f ”  to the coherent state 
subspace. We therefore obtain the very strong result that 

S=sn 
where ll is the orthogonal projection operator that projects rotor wavefunctions to 
their coherent state components. The required intertwining operator S of (14) is 
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therefore the positive part of S. Since S is positive definite, hence invertible, we may 
define X to be its positive Hermitian square root and finally obtain the irreducible 
Hermitian 4 3 )  representation y ( X )  from (13). 

We illustrate with two examples. For a (A, p = 0) irrep, the recurssion relation (17) 
for sL together with (16) gives 

SL+,(0LI If(2)l(OL+2) =(OL+21If(2)I I0L)SL. 

Hence from equation (1 l), we immediately obtain 

A-L S L + 2  

for LCA -- - sL A+L+3  

and sL = 0 for L >  A. Therefore 

and the Hermitian matrix elements, obtained from ( l l ) ,  are given by 

(OL+211Y(~~lIOL) 

= ( O L I I ~ ( ~ ) ( ( O L + ~ ) = ( O L ( ~ ~ ( ~ ) ~ ~ O L + ~ ) X ~ + ’ / ~ ~  

For the (A,  p )  = (2,2) irrep we have the angular momentum states L = 0,2,2,3,4 
so that there is now a multiplicity of L =  2 states. Setting so= 1, we obtain from (17) 
and (18) the four equations for 3’: 

siKr(Ol1f(22)I IKr2)=(K21 If(2)l(o> 
K ’  

with K = 0 and 2. These equations are easily solved to give 

sio = g si2 = s:, = 4 / 2 8  s:, = g . 
For s3 we have the single equation 

-s3(22( If(S)l123) = (231 li‘(2)I 102)si2+ (231 If(S)l(22)s:, 

and, for S4, we have the four equations with solution S3  = 

s4,~*(021 If(s)l IK’4) = 1 (K41 If(2)l JK’2)S$*o 
K ’  K’  

c S“,,(2211f(S)IIKr4)=1 (K4))i‘(9)11Kr2)SZ,,2 
K’  K ’  

with solution 

sio = & si2 = $o = */42 3;’ = A .  
Note that the su(3) subspace for the (2,2) irrep has a single L = 4  state which has 

to be projected from among the span of the three K = 0,2,4 states of the corresponding 
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rotor representation. The K = 4  state is immediately projected out since the 4 3 )  
subspace has only states with K s p. From the solution for S", we determine that 

2 

S(04M) = 1 IK4M)S$, = &[i[l04M) + (8/2)124M)] 
K -0 

L 

S124M) = IK4M)Sk2 =&/42[104M)+(8/2)124M)]. 
K =O 

Thus one finds that projects both rotor states onto the single L = 4 su(3) state 

(4M) = 104M)+ (fi/2)124M) 

and that 

S)4M) = &14M). 

From the S L  matrices one readily determines the XL = 43 matrices. Finally one 
computes the desired matrix elements 

( k ' L ' ~ ( y ( ~ ) ~ ~ k L ) = ( k ' L ' ( ( ( X L ) - ' T ( ~ ) X L ~ ~ k L )  

in this basis. 
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